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Abstract. A study is made of distributed feedback lasers operating above threshold. A set 
of non-linear differential equations governing the field distribution is obtained. Some 
properties of these equations are discussed analytically. Then the results of some numerical 
calculations are presented. As a result, it is shown that the field distribution inside the laser 
deviates notably from the linear case. Some explanations of what the analysis means in 
physical terms and how the different operating regimes are characterized are provided. 

1. Introduction 

Several papers have recently been published on the observation of laser action using a 
periodic structure as a mechanism for feedback. These devices exploit the fact that a 
periodic variation either in the complex dielectric constant or the thickness of the 
medium leads, when the Bragg condition is satisfied, to coupling of waves travelling in 
opposite directions. In conventional lasers the resonator is commonly formed by two 
end-mirrors terminating the laser medium. In distributed feedback (DFB) lasers the 
feedback mechanism is provided by Bragg scattering from a periodic spatial variation of 
the refractive index of the active medium, or of the gain itself. In addition, the 
grating-like nature of the device provides a filter mechanism which restricts the 
oscillations to a narrow spectral range. 

Laser action in thin-film organic guides doped with rhodamine 6G dye has been 
observed by Bjorkholm and Shank (1972), Bjorkholm et af (1973) and Kogelnik eta1 
(1973) and in multimode macroscopic liquid-dye guides by Zory (1972, 1973). More 
recently, Nakamura et a1 (1973, 1975a, 1975b) have reported stimulated emission in 
periodic structures etched into surfaces of GaAs crystals. Wang (1973) has observed 
laser oscillation in dye-impregnated polymer films with two-dimensional periodicities. 
Gas lasers using distributed feedback have also been proposed (Anderson and Shubert 
1973). 

Coupled-mode theory has been extensively used in analysing diffraction 
phenomena in optical waveguides perturbed by regular periodicities. Kogelnik and 
Shank (1971,1972) have used this theory to discuss the feedback mechanism at work in 
DFB lasers. In so doing they have determined the frequency spectra of the DFB and the 
corresponding threshold gain for bulk media. Subsequently, Marcuse (1972) has 
examined the DFB laser oscillation in hollow dielectric waveguides. Kogelnik’s results 
have been subsequently extended by Wang (1973, 1974) to two-layer waveguide 
structures. 
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In all these studies non-linear effects, such as gain saturation, have been neglected. 
The range of validity of these approximations is such that only the eigenvalue equation 
for the lasing frequencies and threshold gain characteristics can be derived. On the 
other hand, in this framework the intensity output cannot be related to the laser 
parameters such as gain, laser length, coupling coefficient (Kogelnik and Shank 1972) 
etc. 

2. Preliminary considerations 

Before examining analytically the behaviour of DFB lasers above threshold, a few 
remarks on the feedback mechanism at work in DFB and conventional lasers are 
premised. 

When the feedback mechanism is achieved by imposing suitable boundary condi- 
tions at the laser cavity and the gain exceeds the threshold level, the laser field increases 
thus reducing the gain to the threshold value. During this process the field pattern does 
not change notably (in the first approximation). Conversely in a DFB device the field 
does not grow uniformly and its pattern changes in such a way as to provide a suitable 
energy exchange among the waves moving in opposite directions along the laser axis. As 
a result, in view of the field pattern relevance DFB devices are more difficult to examine 
above threshold than conventional ones. 

When the electromagnetic field is confined by an optical resonator it can be 
described by a non-linear wave equation whose solution is a combination of modes 
depending on the cavity geometry only. On the contrary, the spatial configuration of the 
modes propagating in a DFB laser depends on the gain distribution in the active region. 
Therefore, it is useless trying to rely on a mode expansion technique for analysing the 
effects of gain saturation. 

In conventional lasers the output characteristics are determined by describing the 
interaction of the laser field with the active medium in terms of radiation intensity, and, 
hence, the field phase distribution is neglected. The omission of phase relations is not 
rigorous because the phases of both direct and backward waves in the optical resonator 
are coupled. Nonetheless, Mikaeliane et a1 (1966) (see also Ratner 1972) have 
compared the results obtained using semiclassical equations and rate equations, thus 
showing that the difference between these two methods is insignificant from the 
practical point of view and does not appear in ordinary experiments. 

Quite different is the situation for the DFB lasers. In this case the feedback is 
provided by a periodic change of the medium parameters on a scale comparable with 
the radiation wavelength. On the other hand, above threshold the gain profile is 
modulated by the coherent interference of the direct and backward waves. Since the 
period of this modulation is comparable with the former one, it is incorrect to neglect, a 
priori, this modulation by assuming uniform intensity on the wavelength scale. 

Finally, as the field amplitude is non-uniform, the gain saturates non-uniformly 
along the active region. Therefore, no closed expression can be derived for the field 
configuration and we can only rely on numerical calculations. 

The aim of this paper is to discuss some results relevant to DFB devices operating at 
the Bragg frequency exhibiting gain coupling. In the model used all geometrical factors 
have been neglected and the laser field has been assumed one-dimensional propagating 
back and forth along the z axis of the active region. The end reflectivity of the medium 
has been assumed equal to zero, as in the Shank-Kogelnik theory. However, this 
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limitation could easily be removed, thus allowing the investigation of the efficiency 
improvement due to non-vanishing mirror reflectivities, as shown in the linear case by 
Chinn (1973). The same applies to the gain coupling. 

3. Above-threshold behaviour of DFB lasers 

3.1. Generalities 

The DFB laser is modelled as a guiding structure stretched along an axis, referred to in 
the following as the z axis, and extending from z = -L/2 to z = L/2. It may consist of a 
thin film sandwiched between a substrate and a top dielectric layer (eventually absent). 
Such a structure is able to confine the guided propagating mode (see figure 1) 
prevalently in the active region, thus allowing the amplification process to make up for 
the losses by leakage through the substrate and top layer. 

- L / 2  LIZ 

Figure 1. Schematic diagram of the DFB laser. 

Slightly different geometries may also be considered relevant to the present analysis. 
In the recent proposals by Akhmanov and Lyakhov (1974) and Fisher (1974) to use DFB 
structures for generation in the ultraviolet and x-ray region, the active material is a gas 
or a crystal bounded in suitable ways. As regards gain saturation effects, these lasers 
exhibit strong similarities with the above mentioned thin-film DFB lasers. 

Feedback mechanism forcing guided waves to travel back and forth may be 
provided by surface periodicity, waveguide index periodicity or gain periodicity. In 
particular we shall consider gain periodicity only. This may be accomplished by using 
two coherent pump beams which interfere in the active region (see for example Zlenko 
et a1 1974). However, the interested reader will easily find out how to extend the 
present analysis to different types of modulation. 

We represent the laser field as a superposition of TE and TM modes. The mono- 
chromatic (e-'"') field E is described by a complex amplitude V ( z )  and a mode profile 
I ( x ,  y) (normalized to carry one unit of power): 

Eb, Y, 2) = V(Z)b(X, Y). (1) 
I depends on the transverse geometry of the guiding structure, whereas V ( z )  satisfies 
the one-dimensional wave equation (see e.g. Felsen and Marcuvitz 1973): 

d2 V w 2 v  2 

dz2 Vf 
-+iiopoaV+- = - w pop. 
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The conductivity U is an ad hoc factor accounting for the energy leakage through the 
boundaries (Tien 1971), while P stands for the complex amplitude of the polarization 
vector 

P(x, y, 2 )  = p ( z ) a x ,  Y). 

On the other hand, P is related to V through (see for example Yariv 1975) 

where A is proportional to the small-signal gain, and 6 is a factor depending on the type 
of laser transition broadening. In passing, we note that equation (3) is valid for laser 
signals small with respect to the saturation intensity 9,. 

According to (3), the relation between P and V depends on (x, y)  coordinates as 
well. However, if we assume that ’& does not change noticeably across the active region, 
the (x, y)  dependence of the above constitutive relation can be neglected. That is the 
case in which the laser field extends in the substrate, namely the lowest-order mode is 
propagating. In any case, our simplifying assumption is in line with accepted laser 
theories (see Sargent et a1 1974, chap. 8). 

Substitution of (3) in (2) yields 

-Z+k2u d2u = i [ A ( l - ( ~ ( ~ ) - * ~ ~ o ~ l u  
dz 

where k = o /v f  and U = vzP(S/.%,)’/2< 1. 
Now, if A depends on z as 

A(z)=Ao(l+2K COS 2&Z) 

with K << 1, equation (4) reads 

d2u 
- + ( k 2 + i W ~ O ~ ) u - i A O ( 1 + 2 ~  cos 2pOz)(l-lu(’)u = O .  dz2 

(4) 

3.2. Laser oscillation description in terms of coupled modes 

If we neglect the non-linear term of equation (5 ) ,  U may be represented as a summation 
over the set of all the discrete modes, whose propagation constants are solutions of an 
infinite-dimensional determinantal equation (see Elachi 197 1 and Elachi and Yeh 
1973, Elachi et a1 1974). For k ==Po (Brag  resonance) the field can be described by 
using two modes of slowly varying amplitudes. As an extension of this coupled-mode 
approach, we write the electric field as the sum 

u(z) = R(z) e-i90z + S(z )  eiso2 

PiR >>d2R/dz2, &S >> d2S/dz2 (6b) 

(6a) 
where 

and 

S(-L/2) = R(L/2) = 0. (6c) 
The S wave represents a field travelling in the positive direction of the z axis. The 
opposite holds for R. 
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Inserting (6) into (5 )  and capitalizing on (6b), we find 
e-iaoz{ R [  k ' - + iopou - iAo( 1 - IR 1' - 21 SI')] 

- iKAdS( 1 - [RI2 - ISI') - R(RS* + R*S)] - 2iPodR/dz} 

+e'"'{S[k' -&+iop,-,u - iAo( 1 - 2)IRI'- ISl')] 

-iKAo[R(l - [RI2- ]SI')- S(RS* + R*S)]+  2iPodS/dz} = 0, (7) 
having neglected the terms containing the phase factors e*3ia0z and e*5is0z, as K << 1. 

Now, by defining 

and starting from (7), we find (see appendix) 

dZ/dl=2(al-I-2~Tcos a-)D (9Q) 

with boundary conditions 

I(-L/2) = I(L/2) = zout 
D (-L/2) = - D (L/2) = -Iout 
T(-L/2) = T(L/2) = 0 

a-(-L/2) = 0. 
The symmetry of the device limits the search for solutions of (9)  to the symmetric 

( U ( - 2 )  = ~ ( z ) )  and antisymmetric (u(z) = -u(z)) field configurations. Accordingly, it 
is easy to verify that this is tantamount to imposing 

& + ( Z )  = &+(--Z), a - ( Z )  = a- ( z )  ( S i )  
Z(z) = Z(-z), D(z)= -D(-z), T(z) = T(-z). (9k)  

For k = Po and o equal to the laser transition frequency, A. is real, a2 = 0 and (9d)  
simplifies as 

da- /d l=  K sin a-DT-'(l -I). 

If a- f 0, (10) can be divided by (9e)  yielding 
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Since the left-hand side is an even function of (d equation (9j)) while the right-hand 
side is an odd one (cf equation (9k)), a- must be constant and equal to nw (cf equation 
(10)). This holds true for each interval in which T does not vanish. If we allow T to 
become negative as well, we can put a- = 0 everywhere and equation (9) read 

dZ/dl= 2(al - I -  ~ K T ) D  (12a) 

dD/dl  = 2( U 1 - I ) z  + 4 T[ K ( 1 - 2 I) - fl  
d T/d[ = - D[ K ( 1 - Z) - f l .  

4. Solution of the differential system for the coupled modes 

4.1. Reduction of the differential system to canonical form 

As a preliminary step we replace equation (126) with 

Z2=4T2+D2.  (13) 

Now, if we introduce a new variable t such that dt  = Ddl,  (12a) and (12c) become a 
plane autonomous system with a saddle point (see Birkhoff and Rota 1969) in 

By reducing (12a) and (12c) to canonical form with the transformation 
4 I =  T K X 1  + X2-k Is 

T = X ~ - $ K X ~ +  TS 

we obtain (as K << 1) 

d ~ z / d l  = - 2 D ~ 2  

D2= 12-4T2. 

The integral curves 

x:(l)xz(l) = constant (17) 

of equations (16a) and (16b) look like a family of similar hyperbolas as shown in figures 
2(a) and 2(b). 

Because of equation (9k), D ( l )  can vanish 2n + 1 times in the interval (-L/2, L/2). 
If we refer for simplicity to the fundamental mode of oscillation (i.e. n = 0), D will be 
positive for l > 0. Accordingly, integrating (16a) from 0 to L/2 yields 

where D(xl) is obtained from (16c) expressing Z and T as functions of x1 and 
xz = xT2 X constant. The integrand of (18) demands some attention since D vanishes for 
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i/ lxl I - 2 T  

Figure 2. ( a )  Graph of the integral curves of the differential system (16). The coordinate 
system (xl, x2) centred at ( Is ,  Ts) (d equation (14)) is also shown. The axes x1 and x2 
intersect the I and T axes at the points Io and To respectively (d equations (19)). D and z 
vanish at the crossing points of the integral curves with the straight lines I = r2T, whereas 
the points of the I axis correspond to z = r L / 2 .  (b) Graph of the integral curves of the 
differential system (16) for 2Ts> Is.  Since the integral curves must intersect the lines 
I= r2T, in order to represent a physical situation, only those on the left of the curve 
tangent to I = 2T are shown. 

x1 = xl(0). A simple analysis will show that D ( q )  = O[(xl - X ~ ( O ) ) " ~ ] ;  consequently, 
this singularity can be easily removed. Anyway, some care must be taken when (18) is 
integrated numerically. 

For the sake of clarity, we note that according to our definitions (cf equation (5)) the 
quantity a 1 A o / 2 & , = a  is the average small-signal gain of the medium, while 
AOK/PO = a1 is the amplitude of the oscillating gain component. Accordingly, the 
right-hand side of (18) can be rewritten as aL/2a l .  

Because of the saddle-point singularity, the differential system (16) admits three 
distinct classes of solutions according to whether x2 < 0, x2 = 0, x2 > 0. In view of this, 
capitalizing on (14) and (15) and taking into account that x1 < 0, we find 

I - ~ K T  5 I~ - $ K T ~  E I~ 
$.I+ T < ~ K I ~ +  T,= T ~ .  

In particular, by specializing (19) to IOut and I(O), we obtain some upper and lower 
bounds for these quantities (see table 1). 

Table 1. Upper and lower bounds for various quantities. 
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4.2. Anulysis of some particular cases 

In this subsection we illustrate some analytic solution of the system (12) and discuss 
some features of the Zout dependence on ut,  K and L. 

As a preliminary case we assume al  << 1, which is tantamount to imposing the gain 
very close to the loss factor. Under this hypothesis and the additional condition 
ul > 2 ~ ’ ,  we find that Zs = ul, Ts = K and 

Then, by substitution of x1 with Z in the integral (18) we obtain 

where Z(0) is related to Zout through (20). This equation displays an important property, 
that is, a1L/2 (‘coupling strength’ in Kogelnik and Shank 1972) depends on u t / 2 ~  E y 
and Zout/ul only. 

As far as y > 1, Zout/ul cannot exceed Zo/al = 1 (cf table l), whereas for y < 1, Zout is 
bounded above by 

and the corresponding value of Zmax(0) is given by 

The interested reader is referred to Rigrod (1963) for the discussion of a similar 
situation occurring in conventional lasers. 

Another particular solution is obtained by assuming x2  = 0. In this case we have (d 

(23) 

figure a b ) )  
z - zS = $ K ( T -  T ~ )  

and the integral (18) can be evaluated analytically: 

where g -= Zs/2 Ts. In particular, when Zs = al and Ts = K ,  g coincides with ‘y. 
A situation of particular interest is that for which K = 0. In this case, the laser 

operates without any external modulation of the gain. The spatial holes burned by the 
sinusoidally varying laser field (see Sargent eta1 1974, p 105) induce a coupling between 
the counter-running fields. A similar phenomenon, such as the generation of sidebands 
by two strong input signals in dilute laser amplifying media, has been investigated by 
Close (1967). For K = 0, in view of equations (14) and (15), equation (17) reads 

P(z- al)  = constant. 

Consequently, equations (12) admit a solution only if T does not vanish at the laser 
boundaries. In fact, if T(*L/2) = 0, constant = 0. This, in turn, implies T = 0 or Z = ul 
in the active region. In the former case one of the waves R and S would vanish. In the 
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latter case, since x2  = 0, equation (24) yields aL/2 = 00. Accordingly, the laser can 
operate only if the end reflectivity is different from zero. 

Finally, as Iout -* 0, equation (18) simplifies to 

with x = I/Io,,, thus giving (see Gradshteyn and Ryzhik 1965) 

2y 1,2sinh-1[(4y2-1)1’2]=aL 
(4Y2 - 1) 

in agreement with equation (18) of Kogelnik and Shank (1972). 

5. Discussion of some numerical results 

We have made some numerical integrations of the non-linear system (12) by assuming 
al<c 1 and al = 1. 

In particular, we have calculated the integral (18) for al  << 1 by assuming different 
values of y( =a/al )  and the relative values of IOut are plotted as functions of CUL in figure 
3. We note that for y < 1, Iout/al increases rapidly in relation to aL; this is in contrast to 
what happens for y > 1. Accordingly, for assigned al,  it seems preferable to increase K 

(modulation depth) as much as possible, in order to augment the laser output. In so 
doing, it is possible to extract a beam having an intensity of the order of Iout,, (cf 
equation (22)), without exceeding appreciably the threshold length. In addition, it is 
worth quoting Kogelnik and Shank (1972) where it is noted that a high value of y leads 
to considerable mode discrimination in favour of the mode oscillating at the Bragg 
resonance. In view of both these circumstances a high y is recommended for a 
gain-coupled DFB laser. 

0 2 4 6 
U L  

Figure 3. Graph of the normalized intensity output Z o u t / ~ l  against the gain aL for al  << 1 
and different values of y = a/al. 
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Our former conclusions are based on the hypothesis of small al .  To get a better 
insight, we have solved the differential system for al = 1 obtaining the graph of figure 4. 
In keeping with the coupled-mode approximation, which implies K << 1, only values of y 
ranging from 3.125 upwards have been considered. On the other hand, the curves of 
figure 4 extend from Iout = 0 to 1. Since equation ( 5 )  is valid for small values of I, these 
diagrams are consistent with our model only near the abscissa axis. Also in this case we 
note a rapid increase of IOut for a slight change of the gain aL, thus confirming the 
previous conclusions in the absence of losses. 

U L  

Figure 4. Graph of the normalized intensity output I,,, against the gain aL for a,  = 1 and 
different values of y. 

In figure 5 we have presented the data of figure 3 in a different way by plotting aL as 
a function of the coupling strength a l L  for different values of Iout/al. For I,,,, = 0, the 
relative graph (cf equation (26)) coincides with the threshold diagram of Kogelnik and 
Shank (1972). The curve for x2 = 0 (Iout = al) has been obtained by capitalizing on 
equation (24), whereas the other two have been obtained from figure 3. We observe 
that all the curves converge to the point T on the a l L  axis. For a gain aL of the order of 

0 2 n - L  6 
a1 L 

Figure 5. Graph of aL against a,L for different values of I,,, and a,  << 1 .  
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10 dB, we have to increase the coupling strength up to 35 dB in order to achieve an 
intensity output equal to al .  Alternatively, with a gain of about 4 dB and a coupling 
strength of 35 dB, an intensity of 1.6 al is obtained. 

Figure 6 refers to the case al = 1. We observe a marked difference from the former. 
In fact, the curves for constant IOut diverge as the coupling strength increases. In 
addition, for assigned gain the coupling strength is a rapidly increasing function of lout. 

In figure 7 the intensity distribution along the laser axis for a gain equal to 3 has been 
plotted for different y. 

5 

Figure 6. Graph of aL against a,L for a l  = 1 and different values of IOU,. 

I Y . 0 . 2 0  

I .  

0.57 

I 

-1 5 0 
az 

5 

Figure 7. Graph of the intensity distribution I along the laser axis for aL = 3 and different 
values of y. 
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6. Condusions 

A non-linear analysis of a gain-coupled DFB laser has been presented. Some analytical 
results have been discussed, which provide some information about the output 
intensity as a function of the laser length, gain and modulation depth. In addition, 
graphs of some numerical calculations have been reported and looked at. 

To simplify the analysis two different operating regimes have been looked at. In the 
first case, characterized by a loss/gain ratio of the order of unity, it has been shown that 
the laser output and the field configuration inside the active region only depend on the 
gain factor CYL and the coupling strength a1 L. In particular, some parametric consider- 
ations have been presented, showing that for assigned ul ,  a small y leads to a high 
output I,,, for a gain slightly greater than its threshold value. Alternatively, for given 
length L, a small y leads to a poor output coupling, that is the output intensity is much 
smaller than the average intensity inside the laser. 

The primary conclusions that can be drawn from this analysis are that a small value 
of y leads to a high output intensity in addition to a strong mode discrimination. 
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Appendix 

Equation (7) splits in two equations: 

dR/d[= R [ - U  +IR)2+2(S(2]- K[S(1 -(RI’- (SI*)-R(RS* + R*S) ] ,  

-dS/d[= S[-U + (SI’+ 21R1’]-K[R(1 -IS(’- lR12) - S(R*S +RS*)J, 

(A. 1) 

(‘4.2) 
having made use of equations (8). Multiplying (A.l) by R* and retaining the real part 
yields 

Analogously for (S(’:  
dlR I2/d[ = (I - 0)(-& + $1 +io) - 2KT COS C Y - (  1 - 21 + D). (A.3) 

-d(S)*/d[ = (I+ D ) ( - U l  +$1-$0) -2KT COS -21-0).  (A.4) 

Adding and subtracting (A.3) and (A.4) we obtain ( 9 ~ )  and (9b). Premultiplying (A.l) 
by S* and (A.2) by R*, adding the two resulting equations and splitting it in real and 
imaginary parts, we get equations (9c) and ( 9 4 .  Premultiplying (A. 1) by S and (A.2) by 
R and proceeding in the same way we obtain equation (9e). 
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